PROBE_SELECTED etc.

This commit is contained in:
LVD-AC 2017-11-08 09:43:29 +01:00 committed by Scott Lahteine
parent 438e894899
commit 8ce9306b27
10 changed files with 66 additions and 78 deletions

View file

@ -2333,10 +2333,9 @@ static void clean_up_after_endstop_or_probe_move() {
* @details Used by probe_pt to do a single Z probe.
* Leaves current_position[Z_AXIS] at the height where the probe triggered.
*
* @param short_move Flag for a shorter probe move towards the bed
* @return The raw Z position where the probe was triggered
*/
static float run_z_probe(const bool short_move=true) {
static float run_z_probe() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
@ -2374,7 +2373,7 @@ static void clean_up_after_endstop_or_probe_move() {
#endif
// move down slowly to find bed
if (do_probe_move(-10 + (short_move ? 0 : -(Z_MAX_LENGTH)), Z_PROBE_SPEED_SLOW)) return NAN;
if (do_probe_move(-10, Z_PROBE_SPEED_SLOW)) return NAN;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
@ -2413,12 +2412,11 @@ static void clean_up_after_endstop_or_probe_move() {
const float nx = rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ry - (Y_PROBE_OFFSET_FROM_EXTRUDER);
if (printable
if (!printable
? !position_is_reachable(nx, ny)
: !position_is_reachable_by_probe(rx, ry)
) return NAN;
const float old_feedrate_mm_s = feedrate_mm_s;
#if ENABLED(DELTA)
@ -2426,12 +2424,6 @@ static void clean_up_after_endstop_or_probe_move() {
do_blocking_move_to_z(delta_clip_start_height);
#endif
#if HAS_SOFTWARE_ENDSTOPS
// Store the status of the soft endstops and disable if we're probing a non-printable location
static bool enable_soft_endstops = soft_endstops_enabled;
if (!printable) soft_endstops_enabled = false;
#endif
feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
// Move the probe to the given XY
@ -2439,7 +2431,7 @@ static void clean_up_after_endstop_or_probe_move() {
float measured_z = NAN;
if (!DEPLOY_PROBE()) {
measured_z = run_z_probe(printable);
measured_z = run_z_probe();
if (!stow)
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
@ -2447,11 +2439,6 @@ static void clean_up_after_endstop_or_probe_move() {
if (STOW_PROBE()) measured_z = NAN;
}
#if HAS_SOFTWARE_ENDSTOPS
// Restore the soft endstop status
soft_endstops_enabled = enable_soft_endstops;
#endif
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Bed X: ");
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 3);
@ -5592,7 +5579,7 @@ void home_all_axes() { gcode_G28(true); }
r = delta_calibration_radius * 0.1;
z_at_pt[CEN] +=
#if HAS_BED_PROBE
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1)
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false)
#else
lcd_probe_pt(cos(a) * r, sin(a) * r)
#endif
@ -5621,7 +5608,7 @@ void home_all_axes() { gcode_G28(true); }
interpol = fmod(axis, 1);
const float z_temp =
#if HAS_BED_PROBE
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1)
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false)
#else
lcd_probe_pt(cos(a) * r, sin(a) * r)
#endif
@ -5637,7 +5624,6 @@ void home_all_axes() { gcode_G28(true); }
z_at_pt[axis] /= _7P_STEP / steps;
}
float S1 = z_at_pt[CEN],
S2 = sq(z_at_pt[CEN]);
int16_t N = 1;
@ -5675,6 +5661,7 @@ void home_all_axes() { gcode_G28(true); }
LOOP_XYZ(axis) {
delta_endstop_adj[axis] -= 1.0;
recalc_delta_settings();
endstops.enable(true);
if (!home_delta()) return;
@ -5688,6 +5675,7 @@ void home_all_axes() { gcode_G28(true); }
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
print_G33_results(z_at_pt, true, true);
delta_endstop_adj[axis] += 1.0;
recalc_delta_settings();
switch (axis) {
case A_AXIS :
h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
@ -5705,7 +5693,7 @@ void home_all_axes() { gcode_G28(true); }
for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
delta_radius += 1.0 * zig_zag;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
recalc_delta_settings();
endstops.enable(true);
if (!home_delta()) return;
@ -5718,7 +5706,7 @@ void home_all_axes() { gcode_G28(true); }
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
print_G33_results(z_at_pt, true, true);
delta_radius -= 1.0 * zig_zag;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
recalc_delta_settings();
r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
}
r_fac /= 2.0;
@ -5731,7 +5719,7 @@ void home_all_axes() { gcode_G28(true); }
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
delta_height -= z_temp;
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
recalc_delta_settings();
endstops.enable(true);
if (!home_delta()) return;
@ -5751,7 +5739,7 @@ void home_all_axes() { gcode_G28(true); }
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
delta_height -= z_temp;
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
recalc_delta_settings();
switch (axis) {
case A_AXIS :
a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
@ -6038,7 +6026,7 @@ void home_all_axes() { gcode_G28(true); }
delta_height -= z_temp;
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
}
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
recalc_delta_settings();
NOMORE(zero_std_dev_min, zero_std_dev);
// print report
@ -8997,7 +8985,7 @@ inline void gcode_M205() {
if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
recalc_delta_settings();
}
/**
* M666: Set delta endstop adjustment
@ -11409,17 +11397,13 @@ void process_parsed_command() {
#endif // HAS_BED_PROBE
#if PROBE_SELECTED
#if ENABLED(DELTA_AUTO_CALIBRATION)
#if ENABLED(DELTA_AUTO_CALIBRATION)
case 33: // G33: Delta Auto-Calibration
gcode_G33();
break;
case 33: // G33: Delta Auto-Calibration
gcode_G33();
break;
#endif // DELTA_AUTO_CALIBRATION
#endif // PROBE_SELECTED
#endif // DELTA_AUTO_CALIBRATION
#if ENABLED(G38_PROBE_TARGET)
case 38: // G38.2 & G38.3
@ -12355,18 +12339,20 @@ void ok_to_send() {
* Recalculate factors used for delta kinematics whenever
* settings have been changed (e.g., by M665).
*/
void recalc_delta_settings(float radius, float diagonal_rod, float tower_angle_trim[ABC]) {
void recalc_delta_settings() {
const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]); // back middle tower
delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]);
delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]); // front left tower
delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]);
delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]); // front right tower
delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]);
delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]); // back middle tower
delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]);
delta_diagonal_rod_2_tower[A_AXIS] = sq(delta_diagonal_rod + drt[A_AXIS]);
delta_diagonal_rod_2_tower[B_AXIS] = sq(delta_diagonal_rod + drt[B_AXIS]);
delta_diagonal_rod_2_tower[C_AXIS] = sq(delta_diagonal_rod + drt[C_AXIS]);
update_software_endstops(Z_AXIS);
axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
}
#if ENABLED(DELTA_FAST_SQRT)