Add Bézier Jerk Control option
This commit is contained in:
parent
bb352f9836
commit
7ee1ab4fd3
7 changed files with 1486 additions and 113 deletions
|
|
@ -41,8 +41,16 @@
|
|||
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
|
||||
and Philipp Tiefenbacher. */
|
||||
/**
|
||||
* Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith
|
||||
* and Philipp Tiefenbacher.
|
||||
*/
|
||||
|
||||
/**
|
||||
* Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.
|
||||
* Equations based on Synthethos TinyG2 sources, but the fixed-point
|
||||
* implementation is new, as we are running the ISR with a variable period.
|
||||
*/
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "stepper.h"
|
||||
|
|
@ -98,6 +106,16 @@ int32_t Stepper::counter_X = 0,
|
|||
|
||||
volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
|
||||
|
||||
#if ENABLED(BEZIER_JERK_CONTROL)
|
||||
int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
|
||||
int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler
|
||||
int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler
|
||||
uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler
|
||||
uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
|
||||
bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative
|
||||
bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
|
||||
#endif
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
|
||||
uint32_t Stepper::LA_decelerate_after;
|
||||
|
|
@ -134,8 +152,10 @@ volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
|
|||
|
||||
uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
|
||||
|
||||
uint16_t Stepper::OCR1A_nominal,
|
||||
Stepper::acc_step_rate; // needed for deceleration start point
|
||||
uint16_t Stepper::OCR1A_nominal;
|
||||
#if DISABLED(BEZIER_JERK_CONTROL)
|
||||
uint16_t Stepper::acc_step_rate; // needed for deceleration start point
|
||||
#endif
|
||||
|
||||
volatile int32_t Stepper::endstops_trigsteps[XYZ];
|
||||
|
||||
|
|
@ -232,41 +252,41 @@ volatile int32_t Stepper::endstops_trigsteps[XYZ];
|
|||
//
|
||||
#define MultiU24X32toH16(intRes, longIn1, longIn2) \
|
||||
asm volatile ( \
|
||||
"clr r26 \n\t" \
|
||||
"mul %A1, %B2 \n\t" \
|
||||
"mov r27, r1 \n\t" \
|
||||
"mul %B1, %C2 \n\t" \
|
||||
"movw %A0, r0 \n\t" \
|
||||
"mul %C1, %C2 \n\t" \
|
||||
"add %B0, r0 \n\t" \
|
||||
"mul %C1, %B2 \n\t" \
|
||||
"add %A0, r0 \n\t" \
|
||||
"adc %B0, r1 \n\t" \
|
||||
"mul %A1, %C2 \n\t" \
|
||||
"add r27, r0 \n\t" \
|
||||
"adc %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %B1, %B2 \n\t" \
|
||||
"add r27, r0 \n\t" \
|
||||
"adc %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %C1, %A2 \n\t" \
|
||||
"add r27, r0 \n\t" \
|
||||
"adc %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %B1, %A2 \n\t" \
|
||||
"add r27, r1 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"lsr r27 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %D2, %A1 \n\t" \
|
||||
"add %A0, r0 \n\t" \
|
||||
"adc %B0, r1 \n\t" \
|
||||
"mul %D2, %B1 \n\t" \
|
||||
"add %B0, r0 \n\t" \
|
||||
"clr r1 \n\t" \
|
||||
A("clr r26") \
|
||||
A("mul %A1, %B2") \
|
||||
A("mov r27, r1") \
|
||||
A("mul %B1, %C2") \
|
||||
A("movw %A0, r0") \
|
||||
A("mul %C1, %C2") \
|
||||
A("add %B0, r0") \
|
||||
A("mul %C1, %B2") \
|
||||
A("add %A0, r0") \
|
||||
A("adc %B0, r1") \
|
||||
A("mul %A1, %C2") \
|
||||
A("add r27, r0") \
|
||||
A("adc %A0, r1") \
|
||||
A("adc %B0, r26") \
|
||||
A("mul %B1, %B2") \
|
||||
A("add r27, r0") \
|
||||
A("adc %A0, r1") \
|
||||
A("adc %B0, r26") \
|
||||
A("mul %C1, %A2") \
|
||||
A("add r27, r0") \
|
||||
A("adc %A0, r1") \
|
||||
A("adc %B0, r26") \
|
||||
A("mul %B1, %A2") \
|
||||
A("add r27, r1") \
|
||||
A("adc %A0, r26") \
|
||||
A("adc %B0, r26") \
|
||||
A("lsr r27") \
|
||||
A("adc %A0, r26") \
|
||||
A("adc %B0, r26") \
|
||||
A("mul %D2, %A1") \
|
||||
A("add %A0, r0") \
|
||||
A("adc %B0, r1") \
|
||||
A("mul %D2, %B1") \
|
||||
A("add %B0, r0") \
|
||||
A("clr r1") \
|
||||
: \
|
||||
"=&r" (intRes) \
|
||||
: \
|
||||
|
|
@ -345,6 +365,732 @@ void Stepper::set_directions() {
|
|||
extern volatile uint8_t e_hit;
|
||||
#endif
|
||||
|
||||
#if ENABLED(BEZIER_JERK_CONTROL)
|
||||
/**
|
||||
* We are using a quintic (fifth-degree) Bézier polynomial for the velocity curve.
|
||||
* This gives us a "linear pop" velocity curve; with pop being the sixth derivative of position:
|
||||
* velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
|
||||
*
|
||||
* The Bézier curve takes the form:
|
||||
*
|
||||
* V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
|
||||
*
|
||||
* Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
|
||||
* through B_5(t) are the Bernstein basis as follows:
|
||||
*
|
||||
* B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1
|
||||
* B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t
|
||||
* B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2
|
||||
* B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3
|
||||
* B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4
|
||||
* B_5(t) = t^5 = t^5
|
||||
* ^ ^ ^ ^ ^ ^
|
||||
* | | | | | |
|
||||
* A B C D E F
|
||||
*
|
||||
* Unfortunately, we cannot use forward-differencing to calculate each position through
|
||||
* the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
|
||||
*
|
||||
* V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
|
||||
*
|
||||
* Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
|
||||
* through t of the Bézier form of V(t), we can determine that:
|
||||
*
|
||||
* A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5
|
||||
* B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4
|
||||
* C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
|
||||
* D = 10*P_0 - 20*P_1 + 10*P_2
|
||||
* E = - 5*P_0 + 5*P_1
|
||||
* F = P_0
|
||||
*
|
||||
* Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
|
||||
* We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
|
||||
* which, after simplification, resolves to:
|
||||
*
|
||||
* A = - 6*P_i + 6*P_t = 6*(P_t - P_i)
|
||||
* B = 15*P_i - 15*P_t = 15*(P_i - P_t)
|
||||
* C = -10*P_i + 10*P_t = 10*(P_t - P_i)
|
||||
* D = 0
|
||||
* E = 0
|
||||
* F = P_i
|
||||
*
|
||||
* As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
|
||||
* the Bézier curve at each point:
|
||||
*
|
||||
* V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]
|
||||
*
|
||||
* Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
|
||||
* use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
|
||||
* per second (driver pulses should at least be 2uS hi/2uS lo), and allocating 2 bits to avoid
|
||||
* overflows on the evaluation of the Bézier curve, means we can use
|
||||
*
|
||||
* t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
|
||||
* A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
|
||||
* B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
|
||||
* C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
|
||||
* F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign
|
||||
*
|
||||
* The trapezoid generator state contains the following information, that we will use to create and evaluate
|
||||
* the Bézier curve:
|
||||
*
|
||||
* blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
|
||||
* blk->initial_rate [VI] = The initial steps per second (=velocity)
|
||||
* blk->final_rate [VF] = The ending steps per second (=velocity)
|
||||
* and the count of events completed (step_events_completed) [CS] (=distance until now)
|
||||
*
|
||||
* Note the abbreviations we use in the following formulae are between []s
|
||||
*
|
||||
* For Any 32bit CPU:
|
||||
*
|
||||
* At the start of each trapezoid, we calculate the coefficients A,B,C,F and Advance [AV], as follows:
|
||||
*
|
||||
* A = 6*128*(VF - VI) = 768*(VF - VI)
|
||||
* B = 15*128*(VI - VF) = 1920*(VI - VF)
|
||||
* C = 10*128*(VF - VI) = 1280*(VF - VI)
|
||||
* F = 128*VI = 128*VI
|
||||
* AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
|
||||
*
|
||||
* And for each point, we will evaluate the curve with the following sequence:
|
||||
*
|
||||
* void lsrs(uint32_t& d, uint32_t s, int cnt) {
|
||||
* d = s >> cnt;
|
||||
* }
|
||||
* void lsls(uint32_t& d, uint32_t s, int cnt) {
|
||||
* d = s << cnt;
|
||||
* }
|
||||
* void lsrs(int32_t& d, uint32_t s, int cnt) {
|
||||
* d = uint32_t(s) >> cnt;
|
||||
* }
|
||||
* void lsls(int32_t& d, uint32_t s, int cnt) {
|
||||
* d = uint32_t(s) << cnt;
|
||||
* }
|
||||
* void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
|
||||
* uint64_t res = uint64_t(op1) * op2;
|
||||
* rlo = uint32_t(res & 0xFFFFFFFF);
|
||||
* rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
|
||||
* }
|
||||
* void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
|
||||
* int64_t mul = int64_t(op1) * op2;
|
||||
* int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
|
||||
* mul += s;
|
||||
* rlo = int32_t(mul & 0xFFFFFFFF);
|
||||
* rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
|
||||
* }
|
||||
* int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
|
||||
* register uint32_t flo = 0;
|
||||
* register uint32_t fhi = bezier_AV * curr_step;
|
||||
* register uint32_t t = fhi;
|
||||
* register int32_t alo = bezier_F;
|
||||
* register int32_t ahi = 0;
|
||||
* register int32_t A = bezier_A;
|
||||
* register int32_t B = bezier_B;
|
||||
* register int32_t C = bezier_C;
|
||||
*
|
||||
* lsrs(ahi, alo, 1); // a = F << 31
|
||||
* lsls(alo, alo, 31); //
|
||||
* umull(flo, fhi, fhi, t); // f *= t
|
||||
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
|
||||
* lsrs(flo, fhi, 1); //
|
||||
* smlal(alo, ahi, flo, C); // a+=(f>>33)*C
|
||||
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
|
||||
* lsrs(flo, fhi, 1); //
|
||||
* smlal(alo, ahi, flo, B); // a+=(f>>33)*B
|
||||
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
|
||||
* lsrs(flo, fhi, 1); // f>>=33;
|
||||
* smlal(alo, ahi, flo, A); // a+=(f>>33)*A;
|
||||
* lsrs(alo, ahi, 6); // a>>=38
|
||||
*
|
||||
* return alo;
|
||||
* }
|
||||
*
|
||||
* This will be rewritten in ARM assembly to get peak performance and will take 43 cycles to execute
|
||||
*
|
||||
* For AVR, we scale precision of coefficients to make it possible to evaluate the Bézier curve in
|
||||
* realtime: Let's reduce precision as much as possible. After some experimentation we found that:
|
||||
*
|
||||
* Assume t and AV with 24 bits is enough
|
||||
* A = 6*(VF - VI)
|
||||
* B = 15*(VI - VF)
|
||||
* C = 10*(VF - VI)
|
||||
* F = VI
|
||||
* AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)
|
||||
*
|
||||
* Instead of storing sign for each coefficient, we will store its absolute value,
|
||||
* and flag the sign of the A coefficient, so we can save to store the sign bit.
|
||||
* It always holds that sign(A) = - sign(B) = sign(C)
|
||||
*
|
||||
* So, the resulting range of the coefficients are:
|
||||
*
|
||||
* t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
|
||||
* A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
|
||||
* B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
|
||||
* C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
|
||||
* F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits
|
||||
*
|
||||
* And for each curve, we estimate its coefficients with:
|
||||
*
|
||||
* void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
|
||||
* // Calculate the Bézier coefficients
|
||||
* if (v1 < v0) {
|
||||
* A_negative = true;
|
||||
* bezier_A = 6 * (v0 - v1);
|
||||
* bezier_B = 15 * (v0 - v1);
|
||||
* bezier_C = 10 * (v0 - v1);
|
||||
* }
|
||||
* else {
|
||||
* A_negative = false;
|
||||
* bezier_A = 6 * (v1 - v0);
|
||||
* bezier_B = 15 * (v1 - v0);
|
||||
* bezier_C = 10 * (v1 - v0);
|
||||
* }
|
||||
* bezier_F = v0;
|
||||
* }
|
||||
*
|
||||
* And for each point, we will evaluate the curve with the following sequence:
|
||||
*
|
||||
* // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
|
||||
* void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
|
||||
* r = (uint64_t(op1) * op2) >> 8;
|
||||
* }
|
||||
* // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
|
||||
* void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
|
||||
* r = (uint32_t(op1) * op2) >> 16;
|
||||
* }
|
||||
* // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
|
||||
* void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
|
||||
* r = uint24_t((uint64_t(op1) * op2) >> 16);
|
||||
* }
|
||||
*
|
||||
* int32_t _eval_bezier_curve(uint32_t curr_step) {
|
||||
* // To save computing, the first step is always the initial speed
|
||||
* if (!curr_step)
|
||||
* return bezier_F;
|
||||
*
|
||||
* uint16_t t;
|
||||
* umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits
|
||||
* uint16_t f = t;
|
||||
* umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)
|
||||
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)
|
||||
* uint24_t acc = bezier_F; // Range 20 bits (unsigned)
|
||||
* if (A_negative) {
|
||||
* uint24_t v;
|
||||
* umul16x24to24hi(v, f, bezier_C); // Range 21bits
|
||||
* acc -= v;
|
||||
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
|
||||
* umul16x24to24hi(v, f, bezier_B); // Range 22bits
|
||||
* acc += v;
|
||||
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
|
||||
* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
|
||||
* acc -= v;
|
||||
* }
|
||||
* else {
|
||||
* uint24_t v;
|
||||
* umul16x24to24hi(v, f, bezier_C); // Range 21bits
|
||||
* acc += v;
|
||||
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
|
||||
* umul16x24to24hi(v, f, bezier_B); // Range 22bits
|
||||
* acc -= v;
|
||||
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
|
||||
* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
|
||||
* acc += v;
|
||||
* }
|
||||
* return acc;
|
||||
* }
|
||||
* Those functions will be translated into assembler to get peak performance. coefficient calculations takes 70 cycles,
|
||||
* Bezier point evaluation takes 150 cycles
|
||||
*
|
||||
*/
|
||||
|
||||
// For AVR we use assembly to maximize speed
|
||||
void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
|
||||
|
||||
// Store advance
|
||||
bezier_AV = av;
|
||||
|
||||
// Calculate the rest of the coefficients
|
||||
register uint8_t r2 = v0 & 0xFF;
|
||||
register uint8_t r3 = (v0 >> 8) & 0xFF;
|
||||
register uint8_t r12 = (v0 >> 16) & 0xFF;
|
||||
register uint8_t r5 = v1 & 0xFF;
|
||||
register uint8_t r6 = (v1 >> 8) & 0xFF;
|
||||
register uint8_t r7 = (v1 >> 16) & 0xFF;
|
||||
register uint8_t r4,r8,r9,r10,r11;
|
||||
|
||||
__asm__ __volatile__(
|
||||
/* Calculate the Bézier coefficients */
|
||||
/* %10:%1:%0 = v0*/
|
||||
/* %5:%4:%3 = v1*/
|
||||
/* %7:%6:%10 = temporary*/
|
||||
/* %9 = val (must be high register!)*/
|
||||
/* %10 (must be high register!)*/
|
||||
|
||||
/* Store initial velocity*/
|
||||
A("sts bezier_F, %0")
|
||||
A("sts bezier_F+1, %1")
|
||||
A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */
|
||||
|
||||
/* Get delta speed */
|
||||
A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */
|
||||
A("clr %8") /* %8 = 0 */
|
||||
A("sub %0,%3")
|
||||
A("sbc %1,%4")
|
||||
A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */
|
||||
A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */
|
||||
|
||||
/* Result was negative, get the absolute value*/
|
||||
A("com %10")
|
||||
A("com %1")
|
||||
A("neg %0")
|
||||
A("sbc %1,%2")
|
||||
A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
|
||||
A("clr %2") /* %2 = 0, means A_negative = false */
|
||||
|
||||
/* Store negative flag*/
|
||||
L("1")
|
||||
A("sts A_negative, %2") /* Store negative flag */
|
||||
|
||||
/* Compute coefficients A,B and C [20 cycles worst case]*/
|
||||
A("ldi %9,6") /* %9 = 6 */
|
||||
A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */
|
||||
A("sts bezier_A, r0")
|
||||
A("mov %6,r1")
|
||||
A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */
|
||||
A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */
|
||||
A("add %6,r0")
|
||||
A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */
|
||||
A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */
|
||||
A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */
|
||||
A("sts bezier_A+1, %6")
|
||||
A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
|
||||
|
||||
A("ldi %9,15") /* %9 = 15 */
|
||||
A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */
|
||||
A("sts bezier_B, r0")
|
||||
A("mov %6,r1")
|
||||
A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */
|
||||
A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */
|
||||
A("add %6,r0")
|
||||
A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */
|
||||
A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */
|
||||
A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */
|
||||
A("sts bezier_B+1, %6")
|
||||
A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
|
||||
|
||||
A("ldi %9,10") /* %9 = 10 */
|
||||
A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */
|
||||
A("sts bezier_C, r0")
|
||||
A("mov %6,r1")
|
||||
A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */
|
||||
A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */
|
||||
A("add %6,r0")
|
||||
A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */
|
||||
A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */
|
||||
A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */
|
||||
A("sts bezier_C+1, %6")
|
||||
" sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
|
||||
: "+r" (r2),
|
||||
"+d" (r3),
|
||||
"=r" (r4),
|
||||
"+r" (r5),
|
||||
"+r" (r6),
|
||||
"+r" (r7),
|
||||
"=r" (r8),
|
||||
"=r" (r9),
|
||||
"=r" (r10),
|
||||
"=d" (r11),
|
||||
"+r" (r12)
|
||||
:
|
||||
: "r0", "r1", "cc", "memory"
|
||||
);
|
||||
}
|
||||
|
||||
FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
|
||||
|
||||
// If dealing with the first step, save expensive computing and return the initial speed
|
||||
if (!curr_step)
|
||||
return bezier_F;
|
||||
|
||||
register uint8_t r0 = 0; /* Zero register */
|
||||
register uint8_t r2 = (curr_step) & 0xFF;
|
||||
register uint8_t r3 = (curr_step >> 8) & 0xFF;
|
||||
register uint8_t r4 = (curr_step >> 16) & 0xFF;
|
||||
register uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
|
||||
|
||||
__asm__ __volatile(
|
||||
/* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
|
||||
A("lds %9,bezier_AV") /* %9 = LO(AV)*/
|
||||
A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
|
||||
A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
|
||||
A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
|
||||
A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/
|
||||
A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
|
||||
A("add %7,r0")
|
||||
A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
|
||||
A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/
|
||||
A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
|
||||
A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
|
||||
A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
|
||||
A("add %7,r0")
|
||||
A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
|
||||
A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
|
||||
A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
|
||||
A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
|
||||
A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
|
||||
/* %8:%7 = t*/
|
||||
|
||||
/* uint16_t f = t;*/
|
||||
A("mov %5,%7") /* %6:%5 = f*/
|
||||
A("mov %6,%8")
|
||||
/* %6:%5 = f*/
|
||||
|
||||
/* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
|
||||
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
||||
A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
|
||||
A("clr %10") /* %10 = 0*/
|
||||
A("clr %11") /* %11 = 0*/
|
||||
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
||||
A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/
|
||||
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
||||
A("adc %11,%0") /* %11 += carry*/
|
||||
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
||||
A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/
|
||||
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */
|
||||
A("adc %11,%0") /* %11 += carry*/
|
||||
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
||||
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
||||
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
||||
A("mov %5,%10") /* %6:%5 = */
|
||||
A("mov %6,%11") /* f = %10:%11*/
|
||||
|
||||
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
|
||||
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
||||
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
||||
A("clr %10") /* %10 = 0*/
|
||||
A("clr %11") /* %11 = 0*/
|
||||
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
||||
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
||||
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
||||
A("adc %11,%0") /* %11 += carry*/
|
||||
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
||||
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
||||
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
||||
A("adc %11,%0") /* %11 += carry*/
|
||||
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
||||
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
||||
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
||||
A("mov %5,%10") /* %6:%5 =*/
|
||||
A("mov %6,%11") /* f = %10:%11*/
|
||||
/* [15 +17*2] = [49]*/
|
||||
|
||||
/* %4:%3:%2 will be acc from now on*/
|
||||
|
||||
/* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
|
||||
A("clr %9") /* "decimal place we get for free"*/
|
||||
A("lds %2,bezier_F")
|
||||
A("lds %3,bezier_F+1")
|
||||
A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/
|
||||
|
||||
/* if (A_negative) {*/
|
||||
A("lds r0,A_negative")
|
||||
A("or r0,%0") /* Is flag signalling negative? */
|
||||
A("brne 3f") /* If yes, Skip next instruction if A was negative*/
|
||||
A("rjmp 1f") /* Otherwise, jump */
|
||||
|
||||
/* uint24_t v; */
|
||||
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
|
||||
/* acc -= v; */
|
||||
L("3")
|
||||
A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
|
||||
A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
|
||||
A("sub %9,r1")
|
||||
A("sbc %2,%0")
|
||||
A("sbc %3,%0")
|
||||
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
|
||||
A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
|
||||
A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
||||
A("sub %9,r0")
|
||||
A("sbc %2,r1")
|
||||
A("sbc %3,%0")
|
||||
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
|
||||
A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
|
||||
A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
||||
A("sub %2,r0")
|
||||
A("sbc %3,r1")
|
||||
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
|
||||
A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
|
||||
A("sub %9,r0")
|
||||
A("sbc %2,r1")
|
||||
A("sbc %3,%0")
|
||||
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
|
||||
A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
|
||||
A("sub %2,r0")
|
||||
A("sbc %3,r1")
|
||||
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
|
||||
A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
|
||||
A("sub %3,r0")
|
||||
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
|
||||
|
||||
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
|
||||
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
||||
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
||||
A("clr %10") /* %10 = 0*/
|
||||
A("clr %11") /* %11 = 0*/
|
||||
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
||||
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
||||
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
||||
A("adc %11,%0") /* %11 += carry*/
|
||||
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
||||
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
||||
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
||||
A("adc %11,%0") /* %11 += carry*/
|
||||
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
||||
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
||||
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
||||
A("mov %5,%10") /* %6:%5 =*/
|
||||
A("mov %6,%11") /* f = %10:%11*/
|
||||
|
||||
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
|
||||
/* acc += v; */
|
||||
A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
|
||||
A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
|
||||
A("add %9,r1")
|
||||
A("adc %2,%0")
|
||||
A("adc %3,%0")
|
||||
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
|
||||
A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
|
||||
A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
||||
A("add %9,r0")
|
||||
A("adc %2,r1")
|
||||
A("adc %3,%0")
|
||||
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
|
||||
A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
|
||||
A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
||||
A("add %2,r0")
|
||||
A("adc %3,r1")
|
||||
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
|
||||
A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
|
||||
A("add %9,r0")
|
||||
A("adc %2,r1")
|
||||
A("adc %3,%0")
|
||||
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
|
||||
A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
|
||||
A("add %2,r0")
|
||||
A("adc %3,r1")
|
||||
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
|
||||
A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
|
||||
A("add %3,r0")
|
||||
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
|
||||
|
||||
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
|
||||
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
||||
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
||||
A("clr %10") /* %10 = 0*/
|
||||
A("clr %11") /* %11 = 0*/
|
||||
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
||||
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
||||
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
||||
A("adc %11,%0") /* %11 += carry*/
|
||||
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
||||
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
||||
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
||||
A("adc %11,%0") /* %11 += carry*/
|
||||
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
||||
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
||||
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
||||
A("mov %5,%10") /* %6:%5 =*/
|
||||
A("mov %6,%11") /* f = %10:%11*/
|
||||
|
||||
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
|
||||
/* acc -= v; */
|
||||
A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
|
||||
A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
|
||||
A("sub %9,r1")
|
||||
A("sbc %2,%0")
|
||||
A("sbc %3,%0")
|
||||
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
|
||||
A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
|
||||
A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
||||
A("sub %9,r0")
|
||||
A("sbc %2,r1")
|
||||
A("sbc %3,%0")
|
||||
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
|
||||
A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
|
||||
A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
||||
A("sub %2,r0")
|
||||
A("sbc %3,r1")
|
||||
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
|
||||
A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
|
||||
A("sub %9,r0")
|
||||
A("sbc %2,r1")
|
||||
A("sbc %3,%0")
|
||||
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
|
||||
A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
|
||||
A("sub %2,r0")
|
||||
A("sbc %3,r1")
|
||||
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
|
||||
A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
|
||||
A("sub %3,r0")
|
||||
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
|
||||
A("jmp 2f") /* Done!*/
|
||||
|
||||
L("1")
|
||||
|
||||
/* uint24_t v; */
|
||||
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
|
||||
/* acc += v; */
|
||||
A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
|
||||
A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
|
||||
A("add %9,r1")
|
||||
A("adc %2,%0")
|
||||
A("adc %3,%0")
|
||||
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
|
||||
A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
|
||||
A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
||||
A("add %9,r0")
|
||||
A("adc %2,r1")
|
||||
A("adc %3,%0")
|
||||
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
|
||||
A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
|
||||
A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
||||
A("add %2,r0")
|
||||
A("adc %3,r1")
|
||||
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
|
||||
A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
|
||||
A("add %9,r0")
|
||||
A("adc %2,r1")
|
||||
A("adc %3,%0")
|
||||
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
|
||||
A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
|
||||
A("add %2,r0")
|
||||
A("adc %3,r1")
|
||||
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
|
||||
A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
|
||||
A("add %3,r0")
|
||||
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
|
||||
|
||||
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
|
||||
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
||||
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
||||
A("clr %10") /* %10 = 0*/
|
||||
A("clr %11") /* %11 = 0*/
|
||||
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
||||
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
||||
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
||||
A("adc %11,%0") /* %11 += carry*/
|
||||
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
||||
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
||||
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
||||
A("adc %11,%0") /* %11 += carry*/
|
||||
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
||||
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
||||
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
||||
A("mov %5,%10") /* %6:%5 =*/
|
||||
A("mov %6,%11") /* f = %10:%11*/
|
||||
|
||||
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
|
||||
/* acc -= v;*/
|
||||
A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
|
||||
A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
|
||||
A("sub %9,r1")
|
||||
A("sbc %2,%0")
|
||||
A("sbc %3,%0")
|
||||
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
|
||||
A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
|
||||
A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
||||
A("sub %9,r0")
|
||||
A("sbc %2,r1")
|
||||
A("sbc %3,%0")
|
||||
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
|
||||
A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
|
||||
A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
||||
A("sub %2,r0")
|
||||
A("sbc %3,r1")
|
||||
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
|
||||
A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
|
||||
A("sub %9,r0")
|
||||
A("sbc %2,r1")
|
||||
A("sbc %3,%0")
|
||||
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
|
||||
A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
|
||||
A("sub %2,r0")
|
||||
A("sbc %3,r1")
|
||||
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
|
||||
A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
|
||||
A("sub %3,r0")
|
||||
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
|
||||
|
||||
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
|
||||
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
||||
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
||||
A("clr %10") /* %10 = 0*/
|
||||
A("clr %11") /* %11 = 0*/
|
||||
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
||||
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
||||
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
||||
A("adc %11,%0") /* %11 += carry*/
|
||||
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
||||
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
||||
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
||||
A("adc %11,%0") /* %11 += carry*/
|
||||
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
||||
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
||||
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
||||
A("mov %5,%10") /* %6:%5 =*/
|
||||
A("mov %6,%11") /* f = %10:%11*/
|
||||
|
||||
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
|
||||
/* acc += v; */
|
||||
A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
|
||||
A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
|
||||
A("add %9,r1")
|
||||
A("adc %2,%0")
|
||||
A("adc %3,%0")
|
||||
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
|
||||
A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
|
||||
A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
||||
A("add %9,r0")
|
||||
A("adc %2,r1")
|
||||
A("adc %3,%0")
|
||||
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
|
||||
A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
|
||||
A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
||||
A("add %2,r0")
|
||||
A("adc %3,r1")
|
||||
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
|
||||
A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
|
||||
A("add %9,r0")
|
||||
A("adc %2,r1")
|
||||
A("adc %3,%0")
|
||||
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
|
||||
A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
|
||||
A("add %2,r0")
|
||||
A("adc %3,r1")
|
||||
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
|
||||
A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
|
||||
A("add %3,r0")
|
||||
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
|
||||
L("2")
|
||||
" clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
|
||||
: "+r"(r0),
|
||||
"+r"(r1),
|
||||
"+r"(r2),
|
||||
"+r"(r3),
|
||||
"+r"(r4),
|
||||
"+r"(r5),
|
||||
"+r"(r6),
|
||||
"+r"(r7),
|
||||
"+r"(r8),
|
||||
"+r"(r9),
|
||||
"+r"(r10),
|
||||
"+r"(r11)
|
||||
:
|
||||
:"cc","r0","r1"
|
||||
);
|
||||
return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
|
||||
}
|
||||
|
||||
#endif // BEZIER_JERK_CONTROL
|
||||
|
||||
/**
|
||||
* Stepper Driver Interrupt
|
||||
*
|
||||
|
|
@ -463,7 +1209,54 @@ void Stepper::isr() {
|
|||
if (!(current_block = planner.get_current_block())) return;
|
||||
}
|
||||
|
||||
trapezoid_generator_reset();
|
||||
// Initialize the trapezoid generator from the current block.
|
||||
static int8_t last_extruder = -1;
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
#if E_STEPPERS > 1
|
||||
if (current_block->active_extruder != last_extruder) {
|
||||
current_adv_steps = 0; // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
|
||||
LA_active_extruder = current_block->active_extruder;
|
||||
}
|
||||
#endif
|
||||
|
||||
if ((use_advance_lead = current_block->use_advance_lead)) {
|
||||
LA_decelerate_after = current_block->decelerate_after;
|
||||
final_adv_steps = current_block->final_adv_steps;
|
||||
max_adv_steps = current_block->max_adv_steps;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
|
||||
last_direction_bits = current_block->direction_bits;
|
||||
last_extruder = current_block->active_extruder;
|
||||
set_directions();
|
||||
}
|
||||
|
||||
// No acceleration / deceleration time elapsed so far
|
||||
acceleration_time = deceleration_time = 0;
|
||||
|
||||
// No step events completed so far
|
||||
step_events_completed = 0;
|
||||
|
||||
// step_rate to timer interval
|
||||
OCR1A_nominal = calc_timer_interval(current_block->nominal_rate);
|
||||
|
||||
// make a note of the number of step loops required at nominal speed
|
||||
step_loops_nominal = step_loops;
|
||||
|
||||
#if DISABLED(BEZIER_JERK_CONTROL)
|
||||
// Set as deceleration point the initial rate of the block
|
||||
acc_step_rate = current_block->initial_rate;
|
||||
#endif
|
||||
|
||||
#if ENABLED(BEZIER_JERK_CONTROL)
|
||||
// Initialize the Bézier speed curve
|
||||
_calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
|
||||
|
||||
// We have not started the 2nd half of the trapezoid
|
||||
bezier_2nd_half = false;
|
||||
#endif
|
||||
|
||||
// Initialize Bresenham counters to 1/2 the ceiling
|
||||
counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
|
||||
|
|
@ -705,11 +1498,19 @@ void Stepper::isr() {
|
|||
// Calculate new timer value
|
||||
if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
|
||||
|
||||
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
||||
acc_step_rate += current_block->initial_rate;
|
||||
#if ENABLED(BEZIER_JERK_CONTROL)
|
||||
// Get the next speed to use (Jerk limited!)
|
||||
uint16_t acc_step_rate =
|
||||
acceleration_time < current_block->acceleration_time
|
||||
? _eval_bezier_curve(acceleration_time)
|
||||
: current_block->cruise_rate;
|
||||
#else
|
||||
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
||||
acc_step_rate += current_block->initial_rate;
|
||||
|
||||
// upper limit
|
||||
NOMORE(acc_step_rate, current_block->nominal_rate);
|
||||
// upper limit
|
||||
NOMORE(acc_step_rate, current_block->nominal_rate);
|
||||
#endif
|
||||
|
||||
// step_rate to timer interval
|
||||
const uint16_t interval = calc_timer_interval(acc_step_rate);
|
||||
|
|
@ -734,14 +1535,32 @@ void Stepper::isr() {
|
|||
}
|
||||
else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
|
||||
uint16_t step_rate;
|
||||
MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
||||
|
||||
if (step_rate < acc_step_rate) { // Still decelerating?
|
||||
step_rate = acc_step_rate - step_rate;
|
||||
NOLESS(step_rate, current_block->final_rate);
|
||||
}
|
||||
else
|
||||
step_rate = current_block->final_rate;
|
||||
#if ENABLED(BEZIER_JERK_CONTROL)
|
||||
// If this is the 1st time we process the 2nd half of the trapezoid...
|
||||
if (!bezier_2nd_half) {
|
||||
|
||||
// Initialize the Bézier speed curve
|
||||
_calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
|
||||
bezier_2nd_half = true;
|
||||
}
|
||||
|
||||
// Calculate the next speed to use
|
||||
step_rate = deceleration_time < current_block->deceleration_time
|
||||
? _eval_bezier_curve(deceleration_time)
|
||||
: current_block->final_rate;
|
||||
#else
|
||||
|
||||
// Using the old trapezoidal control
|
||||
MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
||||
|
||||
if (step_rate < acc_step_rate) { // Still decelerating?
|
||||
step_rate = acc_step_rate - step_rate;
|
||||
NOLESS(step_rate, current_block->final_rate);
|
||||
}
|
||||
else
|
||||
step_rate = current_block->final_rate;
|
||||
#endif
|
||||
|
||||
// step_rate to timer interval
|
||||
const uint16_t interval = calc_timer_interval(step_rate);
|
||||
|
|
@ -1104,6 +1923,7 @@ void Stepper::init() {
|
|||
// Init Stepper ISR to 122 Hz for quick starting
|
||||
OCR1A = 0x4000;
|
||||
TCNT1 = 0;
|
||||
|
||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
|
||||
endstops.enable(true); // Start with endstops active. After homing they can be disabled
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue